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Abstract

This paper presents a simple discrete-time model for valuing options. The fundamental
economic principles of option pricing by arbitrage methods are particularly clear in this setting.
Its development requires only elementary mathematics, vet it contains as a special limiting case : 0| AZst Z{0|

o
the celebrated Black-Scholes model, which has previously been derived only by much more BSMOZ Azi3te
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Its dever’opmefr.f reqmres only elememary mathemmrcs yet it contains as a specta." limiting case : 0|
the celebrated Black-Scholes model, which has previously been derived only by much more
The basic model readily lends itself 1o generalization in many ways.
Moreover, by its very construction, it gives rise to a simple and efficient numerical procedure for

difficult methods.

valuing options for which premature exercise may be optimal.

¥ Our best thanks go to William Sharpe, who first suggested to us the advantages of the discrete-lime approach to
We are also grateful to our students over the past several years. Their favorabk
reactions to this way of presenting things encouraged us to write this article. We have received support from the

option pricing developed here.
National Science Foundation under Grants Nos. SOC-77-18087 and SOC-77-22301.
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1. Introduction

An option is a security that gives its owner the right to trade in a fixed number of shares of a
specified common stock at a fixed price at any time on or before a given date. The act of making
this transaction is referred to as exercising the option. The fixed price is termed the strike price,
and the given date, the expiration date. A call option gives the right to buy the shares; a put

option gives the right to sell the shares.

Options have been traded for centuries, but they remained relatively obscure financial
instruments until the introduction of a listed options exchange in 1973&52;10\(: then, options

trading has enjoyed an expansion unprecedented in American securitics markeis;

Option pricing theory has a long and illustrious history, but it also underwent a revolutionary
change in 1973. At that time, Fischer Black and Myron Scholes presented the first completely
satisfactory equilibrium option pricing model. In the same year, Robert Merton extended their
model in several important ways. These path-breaking articles have formed the basis for many

subsequent academic studies.

As these studies have shown, option pricing theory is relevant to almost every area of finance.

For example, vlrtually all corporate securities can be interpreted as portfolios of puts and calls on
Indeed, the theory applies to a very general class of economic problems
—the valuation of contracts where the outcome to cach party depends on a quantifiable

the assets of the firm.

uncertain future event.
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Indeed, the theory applies to a very general class of economic problems

—the valuation of contracts where the outcome to each party depends on a quantifiable

uncertain future event.

Unfortunately, the mathematical tools employed in the Black-Scholes and Merton articles are ©
quite advanced and have tended to obscure the underlying economics.

mathematics.

However, thanks to a
suggestion by William Sharpe, it is possible to derive the same results using only elementary

In this article we will present a simple discrete-time option pricing formula.

economic principles of option valuation by arbitrage methods are particularly clear in this setting. ,

The fundamental

Sections 2 and 3 illustrate and develop this model for a call option on a stock that pays no

dividends. Section 4 shows exactly how the model can be used to lock in pure arbitrage profits if

the market price of an option differs from the value given by the model. In section 5, we will
show that our approach includes the Black-Scholes model as a special limiting case. By taking
the limits in a different way, we will also obtain the Cox-Ross (1975) jump process model as

another special case.

! To take an elementary case. consider a firm with a single liability of a homogeneous class of pure discount bonds.
The stockholders then have a “call” on the assets of the firm which they can choose to exercise at the maturity date

of the debt by paying its principal to the bondholders. In turn, the bonds can be interpreted as a portfolio containing ,

a default-free loan with the same face value as the bonds and a short position in a put on the assets of the firm.

2 Sharpe (1978) has partially developed this approach to option pricing in his excellent new book, Investments.

Rendleman and Bartter (1978) have recently independently discovered a similar formulation of the option pricing

problem.
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Other more general option pricing problems often seem immune to reduction to a simple formula.

Instead, numerical procedures must be employed to value these more complex options. Michael
Brennan and Eduardo Schwartz (1977) have provided many interesting results along these lines.
However, their techniques are rather complicated and are not directly related to the economic
structure of the problem. Our formulation, by its very construction, leads to an alternative
numerical procedure that is both simpler, and for many purposes, computationally more efficient.

Section 6 introduces these numerical procedures and extends the model to include puts and calls
on stocks that pay dividends. Section 7 concludes the paper by showing how the model can be
generalized in other important ways and discussing its essential role in valuation by arbitrage
methods.

2. The Basic Idea

Suppose the current price of a stock is S = $50, and at the end of a period of time, its price must

La alilhae Ok — @IAZ mee Ok — C1NAN A mall ;e dlin mbmale ln ncinllalkla cdile a nbdlon vl an 8 PP — 02N

=835 I0[X] 4

g4g W Z4at 2Tt 12|11 KUES long ¢ 240[Ck. T2t LiabilityLt
Equity= ZE = Call/Put 340 ZEE2|Q2 MBS 4 ULt 0] 0|0}
£ E o TEAF|Y, ATt ARZE SO SjEBicts ojn| EiCt (5 o)
A" o) 74)

= 52 M3 DHOR A'Z HYSts E JHS3iCHe Ho|Ch

719 7H%)

[ft2tA St Of2fl 9| stochastic OJ-ISZ JHd3H o~ QUL
dS= uSdt +oSAW,

Chot sigmagt o7t 9|n|7+ Ch2Ch of7[0f A FA] AR BEA0| Ofd
719 7h%|e] HE 40| STk A Boltone| 0|0F7| = 67| 7tX|Bto|Ch. 1 Of
Sof AZS0| 7Y FHkle] MEN T8 O, 7ol FHAIE T B st
4X|Ql ZAl2 71X 2 FBIYCE O|E PAT<KE 7HX| 1 73, 1HO|
17190 BE #E0| o K

rz
ol
on
el
fjo
o
Bk
rir

| S|AS0| S&PEHER| RE|ABHEX| SHe B|AHSO
Ct. O] =2 Historical 3 XAt 2ES0| BLC} (F AAAQI 7| S0| OfEH 2= 7}
t e S XtRES 0[83i))

Binomial ¥ S {87 2t AQIVIE
Moste 74O||:f



2. The Basic Idea

Suppose the current price of a stock is S = $50, and at the end of a period of time, its price must
be either $*=$25 or §* =5100. A call on the stock is available with a strike price of K = $50,
expiring at the end of the period.” It is also possible to borrow and lend at a 25% rate of interest.
The one piece of information left unfurnished is the current value of the call, C. However, if

riskless profitable arbitrage is not possible, we can deduce from the given information alone
what the value of the call must be!

Consider the following levered hedge:

(1) write 3 calls at C cach,

(2) buy 2 shares at $50 each, and

(3) borrow $40 at 25%, to be paid back at
the end of the period.
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Table 1 gives the return from this hedge for each possible level of the stock price at expiration. )
Regardless of the outcome, the hedge exactly breaks even on the expiration date. Therefore, to
prevent profitable riskless arbitrage, its current cost must be zero; that is,
3C-100+40=0 - ArbitrageZ} ZXBLX| 47| IsiM= 0152 &l 240] 00| &[0f0f Btct O] BHESt= Co| 7t
olct.
The current value of the call must then be C = $20.
* To keep matters simple, assume for now that the stock will pay no cash dividends during the life of the call. We
also ignore transaction costs, margin requirements and taxes.
3
Table 1
Arbitrage Table Illustrating the Formation of a Riskless Hedge
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Table 1
Arbitrage Table Illustrating the Formation of a Riskless Hedge

expiration date

present date S*=8§25 5% =$100
write 3 calls 3C — -150
buy 2 shares -100 50 200
borrow 40 -50 50
total —= —

If the call were not priced at $20, a sure profit would be possible. In particular, if C = 825, the
above hedge would yield a current cash inflow of $15 and would experience no further gain or
loss in the future. On the other hand, if C= $15, then the same thing could be accomplished by
buying 3 calls, selling short 2 shares, and lending $40.

Table 1 can be interpreted as demonstrating that an appropriately levered position in stock will
replicate the future returns of a call. That is, if we buy shares and borrow against them in the
right proportion, we can, in effect, duplicate a pure position in calls. In view of this, it should
seem less surprising that all we needed to determine the exact value of the call was its sirike

price, underlying stock price, range of movement in the underlying stock price, and the rate of

interest. What may seem more incredible is what we do not need to know: among other things,
we do not need to know the probability that the stock price will rise or fall. Bulls and bears must
agree on the value of the call, relative to its underlying stock price!

This example is very simple, but it shows several essential features of option pricing. And we
will soon see that it is not as unrealistic as it seems.

3. The Binomial Option Pricing Formula

In this section, we will develop the framework illustrated in the example into a complete
valuation method. We begin by assuming that the stock price follows a multiplicative binomial
process over discrete periods. The rate of return on the stock over each period can have two
possible values: # — 1 with probability ¢, or o — 1 with probability 1 — g. Thus, if the current
stock price is S, the stock price at the end of the period will be either uS or dS. We can
represent this movement with the following diagram:

uS with probability ¢

ds with probability 1 —¢

We also assume that the interest rate is constant. Individuals may borrow or lend as much as
they wish at this rate. To focus on the basic issues, we will continue to assume that there are no
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taxes, transaction costs, or margin rcqulrcmcnts Hence, individuals are allowed to sell shortany ¢ 0{7|A{ rO[2t2 3hi= 2 gross rate, = [1+0]X+&]0| EICH.
security and receive full use of the proceeds.*

Letting »_denote ore plus the riskless interest rate over ong period werequire yu >z >d, If o o
these inequalities did not hold, there would be proﬁtable riskless arbitrage opportunities tuzZk M@ AOF £la, 2 EhS 0 r > d O|E (O] 12 gross rateO|C)

involving only the stock and riskless borrowing and lending. G| 2HOf r(gross rate)O] uE Lt AH? 7 O FAZ AFK| @=Lt 1
42 FA IIT AFZE2 FAIS shortst 20| =2 HofH2|A Elct O gt

To see how to value a call on this stock, we start with the simplest situation: the expiration date ol Ho o s o = N

. : ’ i L o3 ==} C =Al = =

is just one period away. Let C be the current value of the call, C, be its value at the end of the el B0l SAUM =S DeiM 22| O FA40 SASHH 2| A 2o of

period if the stock price goes to S and C, be its value at the end of the period if the stock — 2tAT &4 Of A7t S &sHoFRt ot

price goes to ¢S. Since there is now only one period remaining in the life of the call, we know
that the terms of its contract and a rational exercise policy imply that Ci» = max[0, 5~ K] and
Cy =max[0, dS — K]. Therefore,

Gl {lmii—] vl peabebiliGy 9 : 0l call optionO|Ct. %2 C,, OFE4Z2 Co2t EAIRCE.

Ca =max[0,dS — K] with probability 1 —¢

Suppose we form a portfolio containing A shares of stock and the dollar amount B in riskless . siocks AOIZ AbD, BOIZO| 293 Y ZE=

6 Thic , : i s d ZEEZRE FEUC L & F
bonds.” This will cost AS+ B. At the end of tle period, the value of this portfolio will be © 1 mE=Ea|90| J4k|L ofafet ZHCt.

AuS +rB with probability g
0] 32 F(AMA0|7| W20 LYo SHE FA ECh(0] A2 rBOILH)
2|1 o] I r& gross rateO|C}.
Al 74 0 E 22 HEA i<l =
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Since we can select A and B in any way we wish, suppose we choose them to equate the end-
ofperiod values of the portfolio and the call for ecach possible outcome. This requires that

AuS+ rB=C, m2kA Call optiono| ZQ 1t Zto| 71H2 Mt
AdS +rB=Cq

Solving these equations, we find

c,-C, B= uC, —dC, 0| Al2 A= Delta hedge2| A1t 23 XMooz ZC}.
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¢ Buy ing bonds is the same as lending; selling them is the same as borrowing.

With A and B chosen in this way, we will call this the hedging portfolio.

If there are to be no riskless arbitrage opportunities, the current value of the call, C, cannot be
less than the current value of the hedging portfolio, AS + B. If it were, we could make a riskless
profit with no net investment by buying the call and selling the portfolio. It is tempting to say
that it also cannot be worth more, since then we would have a riskless arbitrage opportunity by
reversing our procedure and selling the call and buying the portfolio. But this overlooks the fact
that the person who bought the call we sold has the right to exercise it immediately.

Suppose that AS+ B<S§ —K. If we try to make an arbitrage profit by selling calls for more than
AS + B, but less than § — K, then we will soon find that we are the source of arbitrage profits
rather than the recipient. Anyone could make an arbitrage profit by buying our calls and
exercising them immediately.

We might hope that we will be spared this embarrassment because everyone will somehow find
it advantageous to hold the calls for one more period as an investment rather than take a quick
profit by exercising them immediately. But each person will reason in the following way. If I do
not exercise now, I will receive the same payoff as a portfolio with AS in stock and B in bonds.
If I do exercise now, 1 can take the proceeds, S — K, buy this same portfolio and some extra
bonds as well, and have a higher payoff in every possible circumstance. Consequently, no one
would be willing to hold the calls for one more period.

Summing up all of this, we conclude that if there are to be no riskless arbitrage opportunities, it
must be true that

C,—C; uC,-dC r—d u—r
C=AS+B=—a——d Ja"Tu _ C + v | 2 . N .
u—d | (u-dyr H ) v ( ,d}(ﬂ} @ anA A o) &

HENZL LI2LE O] & 0fl Q= TermS P = upstate2 =
1 5| E downstate2 2™ E=ICt
if thic valne i< oreater than § — K and if not ("= §
O = =
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C=AS+B=

C,~C; +u(
u—d

Equation (2) can be simplified by defining

Q‘wﬁ;:L[FAdJC“+Lu~r}}J/r
(u—dr u—d wod

if this value is greater than S — K, and if not, C=§

2

ErAd sl 1ip£ﬂ~i
u—d u—d
so that we can write
C=IpC.+ (1 _p)Clr (3)
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It is easy to see that in the present case, with no dividends, this will always be greater than § — K
as long as the interest rate is positive. To avoid spending time on the unimportant situations
where the interest rate is less than or equal to zero, we will now assume that » is always greater

7 In some applications of the theory to other areas, it is useful to consider options that can be exercised only on the
expiration date. These are usually termed European options. Those that can be exercised at any earlier time as well,
such as we have been examining here, are then referred to as American options. Our discussion could be easily

modified to include European calls. Since immediate exercise is then precluded, their values would always be given

by (2), even if this is less than S K.

than one. Hence, (3) is the exact formula for the value of a call one period prior to the expiration

in terms of S, K, u, d, and r.

To confirm this, note that if #S< K, then S<Kand C=0,s0 C>S§-K. Also,if dS> K, then
C=8—(Kir)> S—K. The remaining possibility is S > K >dS. In this case, C=p(uS—K)/r.

This is greater than S— K if (1-p)dS> (p

= This formula has a wumher of noable featives. First, the probability g does not appear in the

1K, which is certainly true as long as r> 1.

: o § 2 : 2 b e OO|Bllof B MAIE
formula. This means, surprisingly, that even if different investors have different subjective wolsHor = ffi _ .
probabilities about an upward or downward movement in the stock, they could still agree on the 1) qg2td Sb= At AHM = formuladi] LIEFLEX| G

relationship of C to S, u,d, and .

Second, the value of the call does not depend on investors’ attitudes toward risk. In constructing
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the formula, the only assumption we made about an individual’ s behavior was that he prefers == he AFRFOISA] Mo S2810|
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Second, the value of the call does not depend on investors™ attitudes toward risk. In constructing
the formula, the only assumption we made about an individual’ s behavior was that he prefers
more wealth to less wealth and therefore has an incentive to take advantage of profitable riskless
arbitrage opportunitics. We would obtain the same formula whether investors are risk-averse or
risk-preferring.

Third, the only random variable on which the call value depends is the stock price itself. In
particular, it does not depend on the random prices of other securities or portfolios, such as the
market portfolio containing all securities in the economy. If another pricing formula involving
other variables was submitted as giving equilibrium market prices, we could immediately show
that it was incorrect by using our formula to make riskless arbitrage profits while trading at those
prices.

It is easier to understand these features if it is remembered that the formula is only a gglative,
pricing relationship giving C in terms of S, u, d, and r. Investors’ attitudes toward risk and the
characteristics of other assets may indeed influence call values indirectly, through their effect on
these variables, but they will not be separate determinants of call value.

9 Finally, observe that p = ( — @)/(# — d) is always greater than zero and less than one, so it has

the properties of a probability. In fact, p is the value ¢ would have in equilibrium if investors
were risk-neutral. To see this, note that the expected rate of return on the stock would then be

tha waol-lace —\"r\'-r\ Tate. 56
q(uS)+ (1 - g)dS)=rS

UiC riSKuCSS INict bDl ate, SuU
and

q=@-au-d)=p
Hence, the value of the call can be interpreted as the expectation of its discounted future value in
a risk-neutral world. In light of our earlier observations, this is not surprising. Since the formula
does not involve ¢ or any measure of attitudes toward risk, then it must be the same for any set
of preferences, including risk neutrality.

It is important to note that this does not imply that the equilibrium expected rate of return on the
call is the riskless interest rate. Indeed, our argument has shown that, in equilibrium, holding the
call over the period is exactly equivalent to holding the hedging portfolio. Consequently, the risk

and expected rate of return of the call must be the same as that of the hedging portfolio. It can be
shown that A =0 and B < 0, so the hedging portfolio is equivalent to a particular levered long
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and expected rate of return of the call must be the same as that of the hedging portfolio. It can be
shown that A =0 and B < 0, so the hedging portfolio is equivalent to a particular levered long
position in the stock. In equilibrium, the same is true for the call. Of course, if the call is
currently mispriced, its risk and expected return over the period will differ from that of the
hedging portfolio.

Now we can consider the next simplest situation: a call with two periods remaining before its
cxpiration date. In keeping with the binomial process, the stock can take on three possible values
after two periods,

A

(i

H @, one-step binomial treeX{

— 'S
us o|ck.
S — duS
OfSHE 7|Z=XHte| 7+ 0] §2/0l= WS LIEFHD AT
ds -
L S
Similarly, for the call,
™ Cw=max[0,’S—K] O 0N 2o 2202
C,A
C —  Ca=max[0, duS — K]
Cy-
L Caw=max[0, S —K]

Cyu stands for the value of a call two periods from the current time if the stock price moves
upward cach period; Cy, and Cyy have analogous definitions.

At the end of the current period there will be one period left in the life of the call, and we will be
faced with a problem identical to the one we just solved. Thus, from our previous analysis, we
know that when there are two periods left,

Cr = [pc‘m.' g (1 P)Cnd]/f‘
and 4
Ca= [pCau™t (1 — p)Casl/r

Again, we can select a portfolio with AS in stock and B in bonds whose end-of-period value
will be C if the stock price goes to uS and Ca if the stock price goes to dS. Indeed, the
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functional form of A and B remains unchanged. To get the new values of A and B, we
simply use equation (1) with the new values of (', and Ca.

Can we now say, as before, that an opportunity for profitable riskless arbitrage will be available
if the current price of the call is not equal to the new value of this portfolio or S — K, whichever
is greater? Yes, but there is an important difference. With one period to go, we could plan to
lock in a riskless profit by selling an overpriced call and using part of the proceeds to buy the
hedging portfolio. At the end of the period, we knew that the market price of the call must be
equal to the value of the portfolio, so the entire position could be safely liquidated at that point.
But this was true only because the end of the period was the expiration date. Now we have no
such guarantee. At the end of the current period, when there is still one period left, the market
price of the call could still be in disequilibrium and be greater than the value of the hedging
portfolio. If we closed out the position then, selling the portfolio and repurchasing the call, we
could suffer a loss that would more than offset our original profit. However, we could always
avoid this loss by maintaining the portfolio for one more period. The value of the portfolio at the
end of the current period will always be exactly sufficient to purchase the portfolio we would
want to hold over the last period. In effect, we would have to readjust the proportions in the
hedging portfolio, but we would not have to put up any more money.

Consequently, we conclude that even with two periods to go, there is a strategy we could follow
which would guarantee riskless profits with no net investment if the current market price of a call
differs from the maximum of AS+ B and §— K. Hence, the larger of these is the current value
of the call.

Since A and B have the same functional form in each period, the current value of the call in
terms of C, and Cy will again be C=[pC,+ (1 —p)Cy)/r if this is greater than S — K, and C =
S~ K otherwise. By substituting from equation (4) into the former expression, and noting that
(wa'r.' = C‘n(l, we obtain

C=[p*Cuu+ 291 — p)Cua+ (1 pY'Cadl?
Q)
= [PPmax[0, 1S — K]+ 2p(1 — p)max[0, duS — K] + (1 — pYmax[0, *S — K])/*

A little algebra shows that this is always greater than S — K if, as assumed, » is always greater
than one, so this expression gives the exact value of the call.®

All of the observations made about formula (3) also apply to formula (5), except that the number
of periods remaining until expiration, 72, now emerges clearly as an additional determinant of the
call value. For formula (5), # = 2. That is, the full list of variables determining C is S, K, i, u,
d, and r.

® In the current situation. with no dividends. we can show bv a simple direct aroument that if there are no arbitrage
39 0S5
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Two -step binomial tree0®j A 2| 7}2.



TS LTIRRTER e RS AT 1T TR SISl NIRRT ToMTN S LNISSIINSTEN SESESSSSSIoomoLy R T TeQiSmporTy TR

d,andr.

¥ In the current situation, with no dividends, we can show by a simple direct argument that if there are no arbitrage
opportunities, then the call value must always be greater than 5 — K before the expiration date. Suppose that the
call is selling for S— K. Then there would be an easy arbitrage strategy that would require no initial investment and
would always have a positive return. All we would have to do is buy the call, short the stock, and invest K dollars
in bonds. See Merton (1973). In the general case, with dividends, such an argument is no longer valid, and we must
use the procedure of checking every period.

We now have a recursive procedure for finding the value of a call with any number of periods to

go. By starting at the expiration date and working backwards, we can write down the general
valuation formula for any #:

n ] N N
C= {Z{—.,( i .),]PJ(I—p)" " max[ 0,u’d" 'S — K|/ 1" (6) e 2|9 28 ME n-stepdf| CHSH A generalize A|7|H O A EIC
o= )1

This gives us the complete formula, but with a little additional effort we can express it in a more
convenient way.

Let a stand for the minimum number of upward moves that the stock must make over the next. ,ap= 2x12 =7 2XL S8 9FBO| B & LEQIOFDF max OHof Qs Z40]
n periods for the call to finish in-the-money. Thus g _will be the smallesinon-nceative intcger = = 5

-a @ . . e . = : Che 2 =Xt L2 AQITR? £ 0| & %I 2ol STl 7
such that #'d"“S> K. By taking the matural logarithm of both sides of this inequality, we could 0=t A7k LhE Ak ofst 1€ sl 2 a2tel Rasd)

write @ as the smallest non-negative integer greater than flog( K/Sd")log(u/d). HtZ ao|Ct.

e O] &S CHSHM =1 a0l T3 M 3, log(K/Sd™)/log(u/d) 7 EICE. 2t
O|7{ECt 2 F=7t &[¥ =Tt oJ0jo|Ct oA a& Helsf s1 LtH 00
max2 LI& Z40]7| W20 ofzjet 2 Ao] ECf.

max[0, /d"™S — K]=u/d"’S K e = 0| [ j=(a~n) W}X| 2 summation }3 EIC}.

Forallj <a,
max[0, /d"/S—-K]=0
and forall j = a,

Therefore,

0 " _ _
c=|>—L _pa-pyiidis -k1|ir"
[Jzu(./!(n—f)!_

Of course, if a > n, the call will finish out-ofthe-money even if the stock moves upward every
period, so its current value must be zero.
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Of course, if a > n, the call will finish out-ofthe-money even if the stock moves upward every
period, so its current value must be zero.

By breaking up C into two terms, we can write

: nl [ uld™! : ! Ol og £& Baeh £k
C=8|Y|———Pp/'0-p"/ | —— |5 Kr [ [— p'(1- p)'
[E[ﬂtn—j)’-]‘a i [ " ]k* Z A )

Now, the latter bracketed expression is the complementary binomial distribution function

dla; n, p]. The first bracketed expression can also be interpreted as a complementary binomial Lo , _
apd g J 2y 19 . n—j

distribution function ¢{a; #, p ], where n! u'd . n! (up)’ ((1—p)d)
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p is aprobability, since 0<p <1. To see this, note that p < (r/u) and 7} =lc}.
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In summary:
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where @ [anp ]
p' 0| L2 50| p2l AES ntH BHES M a2 H AN RLEZ &S ZF Hdts ZRO0ICE =
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It is now clear that all of the comments we made about the one period valuation formula
for any number of periods. In particular, the value of a call should be the expectation, in a risk-
neutral world, of the discounted value of the payoff it will receive. In fact, that is exactly what

equation (6) says. Why, then, should we waste time with the recursive procedure when we can at X|ASH @ Ho| QFHO| LQtoat g =7 X|2 Z=717F 100914
write down tbc answer in one direct step? The reason is that lwhilc this one-step approach Iis A} 7b240| 5000|2} 1 &) 2L O] ZS Z=7}7} OF22| SEpEA}
always technically correct, it is really useful only if we know in advance the circumstances in - ol = % Exe CE & ol A
which a rational individual would prefer to exercise the call before the expiration date. If we do SE7t O F a7t § STS B = 0= SE0E 3A Ll'g
not know this, we have no way to compute the required expectation. In the present example, a HofRE| SHS UXHEX I xxtofl £EE s+ glenz 13
call on a stock paying no dividends, it happens that we can determine this information from other ZeMo| 7} L 00| ElCt= o|njo|C]

E&429| 7142 00| £ Ch= 2jojo|ct

sources: the call should never be exercised before the expiration date. As we will see in section

6, with puts or with calls on stocks that pay dividends, we will not be so lucky. Finding the

optimal exercise strategy will be an integral part of the valuation problem. The full recursive

procedure will then be necessary.

For some icaacis, ai altemative compu:te markets” ii’itei"p}"ﬁt’dﬁﬁﬁ of our binomial a‘p‘pmach : state priceg 7fX|_T‘_ AE"%% = 9,![}'% 9||:||0||:|', 'ITugl' 1Td7f Hl'i state price0||:|-,
may be instructive. Suppose that m, and 7, represent the state-contingent discount rates to = ofalo} 20| FHH Bt HO|
states # and d, respectively. Therefore, m, would be the current price of one dollar received at -
the end of the period, if and only if state # occurs. Each security —a riskless bond, the stock,
and the option —must all have returns discounted to the present by m, and 7, if no riskless
arbitrage opportunities are available. Therefore,

~re g rean Ao als

c}.
me=1]0
ma=0]1

1= mur +mar
8§ = 1,(1S) + wa(dS)
C=m,Cy traCa

* R gross rateO|Ct. 2G| 0|9 7tAS A &ts) EXt?
l=r|r g &&F9 7t4S mmeE 0| 83HAM ALES o AO|Ch
o YA| H|ZGIH S =uS|dS E muTid & O| A AHAS s AO|LCt
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The first two equations, for the bond and the stock, imply
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Substituting these equalities for the state-contingent prices in the last equation for the option
yields equation (3).

It is important to realize that we are not assuming that the riskless bond and the stock and the
option are the only three securities in the economy, or that other securities must follow a
binomial process. Rather, however these securities are priced in relation to others in equilibrium,
among themselves they must conform to the above relationships.

From either the hedging or complete markets approaches, i should be clear that three-state or
trinomial stock price movements will not lead to an option pricing formula based solely on
arbitrage considerations. Suppose, for example, that over each period the stock price could move
to uS or dS orremain the same at S. A choice of A and B that would equate the retumns in
two states could not in the third. That is, a riskless arbitrage position could not be taken. Under
the complete markets interpretation, with three equations in now three unknown state-contingent
prices, we would lack the redundant equation necessary to price one security in terms of the
other two.

4. Riskless Trading Strategies

The following numerical example illustrates how we could use the formula if the current marker

price M ever diverged from its formula vafue C. If M > C, we would hedge, and if M < C,

“reverse hedge”, to try and lock in a profit. Suppose the values of the underlying variables are
§=80, n=3, K=80, u=1.5, d=05, r=1.1

In this case, p=(r— d)/(u— d)=0.6. The relevant values of the discount factor are

F1=00909, ~2=0826, r3=0.751

The paths the stock price may follow and their corresponding probabilities (using probability p)
are, when n= 23, with S 80,

19
=835° 0[] 16

[

WS B0{52 AO| HtZ O|ACL O|HA Fot met meE 7hX| 11 3
fi A1, option price formula® HO{Eo™ HZ M Z2t0|A Al0] g
= ZO|C}. (6 paged] AF)

=



120
(.6)

80

40
(4

when n=2,if §=120,

180
(6)

120

60
(4)

180
(30)

60
(48)

20
(-.16)

270
(36)

20
(48)

30
(.16)

270
(216)

(432)

(288)

(.064)

=83&° I0[X] 17

=



(S L
30

(-16)
13
when 7 =2,1f §=40,
— 90
(:36)
60 -
(6)
40 — 30
(48)
20 -~
(4)
— 10
(.16)

Using the formula, the current value of the call would be
C=0.751[0.064(0) + 0.288(0) + 0.432(90 — 80) + 0.216(270— 80)] = 34.065.

Recall that to form a riskless hedge, for each call we sell, we buy and subsequently keep adjusted
a portfolio with AS in stock and B in bonds, where A=(C,— Cy)/(u— d)S. The following tree
diagram gives the paths the call value may follow and the corresponding values of A:

1ANn
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a portfolio with &9— {n stock and B in bonds,_\;\;hére Aj:-( Cy— C)(1— d)S. The following tree
diagram gives the paths the call value may follow and the corresponding values of A:

190
— 107272 4
(1.00)
60463 | L 10
(:848)
34.065 | 5454
(719) (167
2974 — 0
(136)
— 0 -
(.00)
— 0

With this preliminary analysis, we are prepared to use the formula to take advantage of
mispricing in the market. Suppose that when » = 3, the market price of the call is 36. Our
formula tells us the call should be worth 34.065. The option is overpriced, so we could plan to
sell it and assure ourselves of a profit equal to the mispricing differential. Here are the steps you
could take for a typical path the stock might follow.

Step 1 (n=3): Sell the call for 36. Take 34.065 of this and invest it in a portfolio containing A
= 0.719 shares of stock by borrowing 0.719(80) — 34.065 = 23.455. Take the remainder, 36
34.065 = 1.935, and put it in the bank.

Step 2 (n=2): Suppose the stock goes to 120 so that the new A is 0.848. Buy 0.848 - 0.719 =

N 170 mara charac Af ctanl: at 170 nar chara far a tatal avanditira Af 158 AN Rarraur ta nav tha
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34.065 = 1.935, and put it in the bank.

Step 2 (n=2): Suppose the stock goes to 120 so that the new A is 0.848. Buy 0.848 - 0.719 =
0.129 more shares of stock at 120 per share for a total expenditure of 15.480. Borrow to pay the
bill. With an interest rate of 0.1, you already owe 23.455(1.1) = 25.801. Thus, your total current
indebtedness is 25.801 + 15.480 =41 .281.

Step 3 (n = 1). Suppose the stock price now goes to 60. The new A is 0.167. Sell 0.848 —
0.167 = 0.681 shares at 60 per share, taking in 0.681(60) = 40.860. Use this to pay back part of
your borrowing. Since you now owe 41.281(1.1) = 45.409, the repayment will reduce this to
45.409 — 40.860 = 4.549.

Step 4d (n = 0): Suppose the stock price now goes to 30. The call you sold has expired
worthless. You own 0.167 shares of stock selling at 30 per share, for a total value of 0.167(30) =
5. Sell the stock and repay the 4.549(1.1) = 5 that you now owe on the borrowing. Go back to
the bank and withdraw your original deposit, which has now grown to 1.935(1.17 =2.341.

Step 4u (n=0). Suppose, instead, the stock price goes to 90. The call you sold is in the money
at the expiration date. Buy back the call, or buy one share of stock and let it be exercised,
incurring a loss of 90 — 80 = 10 either way. Borrow to cover this, bringing your current
indebtedness to 5 + 10 = 15. You own 0.167 shares of stock selling at 90 per share, for a total
value of 0.167(90) = 15. Sell the stock and repay the borrowin%. Go back to the bank and
withdraw your original deposit, which has now grown to 1.935(1.1) =2.341.

In summary, if we were correct in our original analysis about stock price movements (which did
not involve the unenviable task of predicting whether the stock price would go up or down), and
if we faithfully adjust our portfolio as prescribed by the formula, then we can be assured of
walking away in the clear at the expiration date, while still keeping the original differential and
the interest it has accumulated. It is true that closing out the position before the expiration date,
which involves buying back the option at its then current market price, might produce a loss
which would more than offset our profit, but this loss could always be avoided by waiting until
the expiration date. Moreover, if the market price comes into line with the formula value before
the expiration date, we can close out the position then with no loss and be rid of the concern of
keeping the portfolio adjusted.

It still might seem that we are depending on rational behavior by the person who bought the call
we sold. If instead he behaves foolishly and exercises at the wrong time, could he makes things
worse for us as well as for himself? Fortunately, the answer is no. Mistakes on his part can only
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mean greater profits for us. Suppose that he exercises too soon. In that circumstance, the
hedging portfolio will always be worth more than § - K, so we could close out the position then
with an extra profit.

Suppose, instead, that he fails to exercise when it would be optimal to do so. Again there is no
problem. Since exercise is now optimal, our hedging portfolio will be worth § — K. If he had
exercised, this would be exactly sufficient to meet the obligation and close out the position.
Since he did not, the call will be held at least one more period, so we calculate the new values of
C, and Cy and revise our hedging portfolio accordingly. But now the amount required for the
portfolio, AS + B, is less than the amount we have available, S— K. We can withdraw these
extra profits now and still maintain the hedging portfolio. The longer the holder of the call goes
on making mistakes, the better off we will be.

Consequently, we can be confident that things will eventually work out right no matter what the
other party does. The return on our total position, when evaluated at prevailing market prices at
intermediate times, may be negative. But over a period ending no later than the expiration date,
it will be positive.

In conducting the hedging operation, the essential thing was to maintain the proper proportional
relationship: for each call we are short, we hold A shares of stock and the dollar amount B in
bonds in the hedging portfolio. To emphasize this, we will refer to the number of shares held for
cach call as the hedge ratio. In our example, we kept the number of calls constant and made
adjustments by buying or selling stock and bonds. As a result, our profit was independent of the
market price of the call between the time we initiated the hedge and the expiration date. If things
got worse before they got better, it did not matter to us.

Instead, we could have made the adjustments by keeping the number of shares of stock corstant
and buying or selling calls and bonds. However, this could be dangerous. Suppose that after
initiating the position, we needed to increase the hedge ratio to maintain the proper proportions.
This can be achieved in two ways:

(a) buy more stock, or
(b) buy back some of the calls.

If we adjust through the stock, there is no problem. If we insist on adjusting through the calls,
not only is the hedge no longer riskless, but it could even end up losing money! This can happen
if the call has become even more overpriced. We would then be closing out part of our position
in calls at a loss. To remain hedged, the number of calls we would need to buy back depends on
their value, not their price. Therefore, since we are uncertain about their price, we then become
uncertain about the return from the hedge. Worse yet, if the call price gets high enough, the loss
on the closed portion of our position could throw the hedge operation into an overall loss.

 If we were reverse hedging by buying an undervalued call and selling the hedging portfolio, then we would
ourselves want to exercise at this point. Since we will receive § —K from exercising, this will be exactly enough
money to buy back the hedging portfolio.
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To see how this could happen, let us rerun the hedging operation, where we adjust the hedge
ratio by buying and selling calls.

Step 1 (n=3): Same as before.

Step 2 (n = 2). Suppose the stock goes to 120, so that the new A = 0.848. The call price has
gotten further out of line and is now selling for 75. Since its value is 60.463, it is now over-
priced by 14.537. With 0.719 shares, you must buy back 1 — 0.848 = 0.152 calls to produce a
hedge ratio of 0.848 = 0.719/0.848. This costs 75(0.152) = 11.40. Borrow to pay the bill. With
the interest rate of 0.1, you already owe 23.455(1.1) = 25.801. Thus, your total current
indebtedness is 25.801 + 11.40 =37.201.

Step 3 (n=1): Suppose the stock goes to 60 and the call is selling for 5.454. Since the call is
now fairly valued, no further excess profits can be made by continuing to hold the position.

Therefore, liquidate by selling your 0.719 shares for 0.719(60) = 43.14 and close out the call
position by buying back 0.848 calls for 0.848(5.454) = 4.625. This nets 43.14 —4.625 = 38.515.
Use this to pay back part of your borrowing. Since you now owe 37.20(1.1) = 40.921, after
repayment you owe 2.406. Go back to the bank and withdraw your original deposit, which has
now grown to 1.935(1.17 = 2.341. Unfortunately, after using this to repay your emaining
borrowing, you still owe 0.065.

Since we adjusted our position at Step 2 by buying overpriced calls, our profit is reduced.
Indeed, since the calls were considerably overpriced, we actually lost money despite apparent
profitability of the position at Step 1. We can draw the following adjustment rule from our
experiment: To adjust a hedged position, never buy an overpriced option or sell an underpriced
option. As a corollary, whenever we can adjust a hedged position by buying more of an
underpriced option or selling more of an overpriced option, our profit will be enhanced if we do
so. For example, at Step 3 in the original hedging illustration, had the call still been overpriced,
it would have been better to adjust the position by selling more calls rather than selling stock. In
summary, by choosing the right side of the position to adjust at intermediate dates, at a minimum
we can be assured of eaming the original differential and its accumulated interest, and we may
carn considerably more.,

5. Limiting Cases

In reading the previous sections, there is a natural tendency to associate with each period some
particular length of calendar time, perhaps a day. Wlth thlS in mind, you may have had two
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In reading the previous sections, there is a natural tendency to associate with each period some
particular length of calendar time, perhaps a day. With this in mind, you may have had two

objections. In the first place, prices a _day from now may take on many more than just two
possible values. Furthermore, the marketis not open for trading only once a dav, but, instead,

trading takes place almost continuously.

These objections are certainly valid. Fortunately, our option pricing approach has the flexibility
to meet them. Although it might have been natural to think of a period as one day, there was
nothing that forced us to do so. We could have taken it to be a much shorter interval —say an
hour —or even a minute. By doing so, we have met both objections simultaneously. Trading

17

would take place far more frequently, and the stock price could take on hundreds of values by the
end of the day.

However, if we do this, we have to make some other adjustments to keep the probability small
that the stock price will change by a large amount over a minute. We do not want the stock to
have the same percentage up and down moves for one minute as it did before for one day. But
again there is no need for us to have to use the same values. We could, for example, think of the
price as making only a very small percentage change over each minute.

To make this more precise, suppose that # represents the elapsed time between successive stock
price changes. That is, if ¢ is the fixed length of calendar time to expiration, and # is the
number of periods of length / prior to expiration, then

h=tn

As trading takes place more and more frequently, A gets closer and closer to zero. We must
then adjust the intervaldependent variables r,u, and d in such a way that we obtain empirically
realistic results as /# becomes smaller, or, equivalently, as 7 —> o,

When we were thinking of the periods as having a fixed length, r represented both the interest ,
rate over a fixed length of calendar time and the interest rate over one period. Now we need to
make a distinction between these two meanings. We will let » continue to mean one plus the
interest rate over a fixed length of calendar time. When we have occasion to refer to one plus the
interest rate over a period (trading interval) of length /4, we will use the symbol 7.
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make a distinction between these two meanings. We will let r continue to mean one plus the
interest rate over a fixed length of calendar time. When we have occasion to refer to one plus the
interest rate over a period (trading interval) of length /4, we will use the symbol 7.

Clearly, the size of 7 depends on the number of subintervals, 7, into which ¢ is divided. Over
the # periods until expiration, the total return is 7", where n= t/h. Now not only do we want 7
to depend on 7, but we want it to depend on # in a particular way —so that as # changes the
total return 7" over the fixed time 7 remains the same. This is because the interest rate
obtainable over some fixed length of calendar time should have nothing to do with how we

choose to think of the length of the time interval A4.

If r (without the “hat”) denotes one plus the rate of interest over a fixed unit of calendar time,
then over elapsed time 7, # is the total return.

not depend on #. As we have argued, we want to choose the dependence of 7 on #, so that

n

for any choice of n. Therefore, 7#=7'"". This last equation shows how / must depend on #
for the total return over elapsed time ¢ to be independent of #.

We also need to define » and d in terms of ». At this point, there are two significantly different
paths we can take. Depending on the definitions we choose, as # — % (or, equivalently, as #
— 0), we can have either a continuous or a jump stochastic process. In the first situation, very

19T he scale of this unit (perhaps a day, or a year) is unimportant as long as » and ¢ are expressed in the same scale.
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small random changes in the stock price will be occurring in each very small time interval. The
stock price will fluctuate incessantly, but its path can be drawn without lifting pen from paper.
In contrast, in the second case, the stock price will usually move in a smooth deterministic way,
but will occasionally experience sudden discontinuous changes. Both can be derived from our
binomial process simply by choosing how # and ¢ depend on n. We examine in detail only the
continuous process that leads to the option pricing formula originally derived by Fischer Black
and Myron Scholes. Subsequently, we indicate how to develop the jump process formula
originally derived by John Cox and Stephen Ross.

Recall that we supposed that over each period the stock price would experience a one plus rate of |

return of u with probability ¢ and d with probability 1 —¢. It will be easier and clearer to

work ingtead with the natral looarithm of the one nlig rate of rehim loo » or loo 4 Thic
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Recall that we supposed that over each period the stock price would experience a one plus rate of

return of # with probability ¢ and & with probability 1 — ¢. It will be easier and clearer to
work, instead, with the natural logarithm of the one plus rate of retumn, log # or log . This
gives the continuously compounded rate of return on the stock over each period. It is a random
variable which, in each period, will be equal to log # with probability ¢ and log d with
probability 1 —g.

Consider a typical sequence of five moves, say . d, . . d. Then the final stock price will bee
§* = uduudS, §*/S=1d, and log(S*/S)=3log u+ 2 log d. More generally, over » periods,

log (5*/S)=j log u + (n —j) log d = log(u/d)+ nlog d

where / is the (random) number of upward moves occurring during the # periods to expiration.
Therefore, the expected value of log($*/S) is

Ellog(S*/8)] = log(u/d) » Fi(j)+ nlog d

log(w/d)F * Var(j)

and its variance 1s
Var[log(S*/S)) =

q. Thus, E(j)= ng. Also since the

Each of the » posstblc upward moves has probabllltzv
=q(l — q), then Var(@)= ng(l — g).

variance each period is (1 — ¢)* + (I — ¢)(0
Combining all of this, we have

Lllog( S */8)]=[q log(u/d)+logd]n = fmn
Varlog( S */8)] = g(1 — q)log( 1/ d)'n =67

Let us go back to our discussion. We were considering dividing up our original longer time
period (a day) into many shorter periods (a minute or even less). Our procedure calls for, over
fixed length of calendar time 7, making n larger and larger. Now if we leld everything else
constant while we let 7 become large, we would be faced with the problem we talked about
earlier. In fact, we would certainly not reach a reasonable conclusion if either fn or &'n
went to zero or infinity as # became large. Since ¢ is a fixed length of time, in searching for a
realistic result, we must make the appropriate adjustments in u, ¢, and ¢. In doing that, we
would at least want the mean and variance of the continuously compounded rate of return of the
assumed stock price movement to coincide with that of the actual stock price as #n — o
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Then we would want to choose u, d, andg so that
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[q log(u/d)+log dln — ut o]
=u"nt as n—» wo
gl —gloo(u/d) ‘n— o't
=0/2n
A little algebra shows we can accomplish this by letting

w=e T d=e o gl Lo Wi X 22 =28 89 u d,qF OlXE RolE + U0 0 FUE FF HPES B
In this case, for any #,
* ud qF #3357
fin=pt and G*n=[o® -p’(t/mt u d qE BOUE He X %o, oot 2Ol LhYSM REXS HE =AL

Clearly, as n— 0, &'n —> ot while fm= gy for all values of n.

lgln (u/d) +1nd]n
Alternatively, we could have chosen #, d, and ¢ so that the mean and variance of the future 1 1 ."_f
stock price for t_he discrete binomial process a;?proach the prespecified mean and variance of t%)e = [?-’_ = ( ﬁ) [ l 2 \/ f_.?n — \/ f_.? nin
actual stock price as # — oo However, just as we would expect, the same values will & z J \1’ n
accomplish this as well. Since this would not change our conclusions, and it is computationally —
more convenient to work with the continuously compounded rates of return, we will proceed in o V/ t [t .
that way. =lovitin +u;—av— n = ut

This satisfies our initial requirement that the limiting means and variances coincide, but we still t
need to verify that we are arriving at a sensible limiting probability distribution of the £l
continuously compounded rate of return. The mean and variance only describe certain aspects of

that distribution. ¢(1—¢)ln (u/d))’n
(&

For our model, the random continuously compounded rate of return over a period of length 7 is 1 1 1 1, pu 9
the sum of » independent random variables, each of which can take the value log u with = (\?"' ? \Xﬁ f; le )(? ?(_) \/if’ nj )(29 \Xﬁf’ 713 ) n
probability ¢ and log ¢ with probably 1 — ¢g. We wish to know about the distribution of this = “ 0 = “ 0
sum as 7 becomes large and ¢, u, and d arc chosen in the way described. We need to 1 1 2 t ¢ f2
: : : ; : bl S LN P S PO L
remember that as we change », we are not simply adding one more random variable to the =1 7 )—IG n=oct—u ==>og't
previous sum, but instead are changing the probabilities and possible outcomes for every 4 4 s°n n n
member 01_C the sum. At this point, we can rely on a form of the central limit theorem which, WatA u, d, g7 nooo U I FO|E ZAS WESS oISt & UCt
when applied to our problem, says that, as # — o, if
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where N(z) is the standard normal distribution function. Putting this into words, as the number
of periods nto which the fixed length of time to expiration is divided approaches infinity, the
probability that the standardized continuously compounded rate of return of the stock through the
expiration date is not greater than the number z approaches the probability under a standard
normal distribution.

The initial condition says roughly that higher-order properties of the distribution, such as how it
is skewed, become less and less important, relative to its standard deviation, as # — . We can
verify that the condition is satisfied by making the appropriate substitutions and finding

logu—,.4 +(1- q)‘lood /.4 1-g} +4* ¢
o2 \/_ an(l -q)

which goes to zero as # — wosince ¢ = E+ Ju/cr)«!t /n . Thus, the multiplicative binomial

model for stock prices includes the lognormal distributionas a limiting case.

Black and Scholes began directly with continuous trading and the assumption of a lognormal
distribution for stock prices. Their approach relied on some quite advanced mathematics.
However, since our approach contains continuous trading and the lognormal distribution as a
limiting case, the two resulting formulas should then coincide. We will see shortly that this is
indeed true, and we will have the advantage of using a much simpler method. It is important to
remember, however, that the economic arguments we used to link the option value and the stock
price are exactly the same as those advanced by Black and Scholes (1973) and Merton (1973,
1977).

The formula derived by Black and Scholes, rewritten in terms of our notation, is

Black-Scholes Option Pricing Formula
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The tormula derived by Black and Scholes, rewritten in terms ot our notation, 18

Black-Scholes Option Pricing Formula

C = SN(x) - Kr 'N(x—o+ft)

where

leag(sfm-)%m,’_-

i

We now wish to confirm that our binomial formula converges to the Black-Scholes formula
when ¢ is divided into more and more subintervals, and 7, u, d, and ¢ are chosen in the way
we described —that is, in a way such that the multiplicative binomial probability distribution of
stock prices goes to the lognormal distribution.

For easy reference, let us recall our binomial option pricing formula:

74|

C=58¢[a:n, p'| - Ki "¢la;n, p]

The similarities are readily apparent. 7 is, of course, always equal to +’. Therefore, to show
the two formulas converge, we need only show that as » — o«

I ola:n, p'l— N(x) and o[a;n, p] - N(x - 0"\/!_) I

We will consider only ¢@{a; , p], since the argument is exactly the same for @fa; n, #s

The complementary binomial distribution function ¢{a;n, p] is the probability that the sum of »
random variables, each of which can take on the value 1 with the probability p and 0 with the
probability 1 — p, will be greater than or equal to . We know that the random value of this sum,

J.has mean 1p and standard deviation 4fnp(1— p) . Therefore,

1 ¢la, n, p]l=Prob[j<a 1] = Prob[ Jow a'f]fnp]
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1 — @la;, n, p] = Prob[j < a— 1] = Prob i I :i/

Nnp=p) ~ Jnp(-p)

Now we can make an analogy with our earlier discussion. If we consider a stock which in each
period will move to 8 with probability p and S with probability 1 — p, then log(8§*/S)=/
log (u/d)+ nlog d. The mean and variance of the continuously compounded rate of return of
this stock are

fi, =plogiu/dy+logd and &, = p(l- pilogl u/d)]’

Using these equalitics, we find that

j—np _[og(S*fS)f‘.&ﬁn

Jwa-p &4

Recall from the binomial formula that

a—1=log( K/Sd")/log(u/d)—¢e =[log( K/S)—nlog d]/log(eNd) — €,

where £ is a number between zero and one. Using this and the definitions of g1,
little algebra, we have
a—1-np log(K/S)— fi,n—elog(uld)
Nnp(1-p) &,

Putting these results together,

22
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log( S */8)—fi,n y log( K/S)— fi,n—¢elog(u/d)

&,4n ,4n

1 - ¢{a; n,p] = Prob

We are now in a position to apply the central limit theorem. First, we must check if the initial
condition,

p|logu—/ftp|3-|{1—jz:r)|logd'—;lp|3 CQ=pp+p

& Tt "

as i —> oo, is satisfied. By first recalling that p=(F —d)/(u—d),andthen 7 =" u= TN

and d=e °"'" itis possible to show that as » —» oo,

As a result, the initial condition holds, and we are justified in applying the central limit theorem.

- 2
To do so, we need only evaluate fi,n, 6,1 and log(u/d) as n — =
discussion for parameterizing ¢ shows thatas # — o«

" Examination of our

A surprising feature of this evaluation is that although p # ¢ and thus .‘&p ES ,u: and (frp # &, nonetheless 6';,-\{;
% — ; 1 4 2
and cr«\/:: have the same limiting value as n —» . By contrast, since g# log r'f(icz J, Hyn and gg do not.

This results from the way we needed to specify « and o to obtain convergence to a lognormal distribution.
Rewriting this as oy = (log u)-\/; , it is clear that the limiting value o of the standard deviation does not depend
on p org, and hence must be the same for either. However, at any point before the limit, since

(5'2112(62—_:f:—7} and 6;;1=|:02_(]0g,-_%01J~L}

g and 6p will generally have different values.

. N 1 ’ 5 . st
The fact that L —> [lngr -—c )1 can also be derived from the property of the lognormal distribution that
2

log E[S*/ 8] = i +%ozl
where [ and g4 are measured with respect to probability p. Since p=(f—d)/(u—d) ., it follows that

» = pu+(1 - nd_ Forindenendentlv distributed random variables. the exnectation of a nroduct eauals the nroduct

=835 I 0[X] 30

Step 5

i€ ot e = s=ets =o|H Eot

of =t ot 22 of

=
Ch. ofgf HS2 27|

rir

discrete version& continuous version2 2 HtECH= O|0| 2t
X|ghste it

— 7 Vifn
d 6_0' \;'f?n
- £
r=ptl"

a3 22 E2|A ez offet 20| Taylor HIHE 0| 83HCt

fa)-70)= £ 0)a—0)+ L g0+

uet dg 0|E 0|&3to| ™I4St

Qal
Y5

u= e Vil =e™ =1+0e” g+ 5 2677 _ gzt + ...
_ \r"f,fln _ oz __ ox 1 P 2
d=¢€ =e =l—cge™ |, -p+ 50 € =g — ..

of

r= f_.} n

AEA 19 d= olrHob ZtCH

ot



hd |

l )
log E[S*/S] =yt + =0t
. z=+t/n

where E and 4 are measured with respect to probability p. Since p=(f—d)/(u—d) . it follows that

r= pu+(1— p)d . For independently distributed random variables, the expectation of a product equals the product [[t2FA, u}l d= Of2QF ZCt.
of their expectations. Therefore, 1 9 0
E[S*/8]=[pu+(-p)d]" =" =r' u=1l+toz+ oz
Substituting # for £[5*/S] in the previous equation, we have 1 9 0
d=l+or— o'z
23 N N N
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e Step 6.
O|X| O|Z 0]&3}l0] RHSZ discrete {7 0| M continuous {2 2 HFLO] EX}. 12{H,

In(K/S)— u:,n— eln(u/d)
ﬁp'fﬁ[lﬂgf—%oﬂf and 6,4 - ol f};\/;

Furthermore, log(u/d) — 0 as n— . In (/Kf{ S:‘ - (lnr - %02 )f’

o

For this application of the central limit theorem, then, since - V/_
G'p n

. 13
log( K/ §)~ ft,n—elog(u/ d) 'Og(K/‘”‘["’g”"EG]
—ZzZ=
e e B Vi
we have « g
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In(K/8)— (Inr— %UQ)f

=




: R of I In(u/d)= n->c0 2 7}BIA AR2FXIZ EICH
log( Kr '/S8) 1
1-¢[a:n, p]—> N(z) = R
ola:n, p (z) N|: = +20'-\/t_j|

O3 A SHo = FO|T A WS ECh

The final step in the argument is to use the symmetry property of the standard normal deviation
distribution that 1 — NM(z)= N(-z). Therefore, as #— o

ﬁa;f?,P]ﬂN(*Z)‘N{%;%a z}—N(xGJr_)

Since a similar argument holds for d{a; n, p ], this completes our demonstration that the
binomial option pricing formula contains the Black-Scholes formula as a limiting case. 1%

)

My =logr——oc~

R Ny

12 The only difference is that, as n — oo, p'—= %Jr%[(log " +302)/0}h‘ /n . Further, it can be shown that as n
—a, A— N(x). Therefore, for the Black-Scholes model, AS =SN(x) and B= Kkt N(x- (7.‘[,'_) 1

1 In our original development, we obtained the following equation (somewhat rewritten) rehting the call prices in
successive periods:

F—d Ty R

Lo c,-FC=0

—d u—d

By their more difficult methods, Black and Scholes obtained directly a partial differential equation analogous to our
discrete-time difference equation. Their equation is

2 A P
i + (logr')So—(: —(i—( —(logr)C =0.
S o

1S 2 a

[»)]

o’§?

D

1
2

Q

The value of the call, C, was then derived by solving this equation subject to the boundary condition C* = max]0,

S*—K].

24

As we have remarked, the seeds of both the Black-Scholes formula and a continuous-time jump
process formula are both contained within the binomial formulation. At which end point we
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As we have remarked, the seeds of both the Black-Scholes formula and a continuous-time jump
process formula are both contained within the binomial formulation. At which end point we
arrive depends on how we take limits. Suppose, in place of our former correspondence for u, d,
and ¢, we instead set

u=u, d=e&"" g=ntn).

This correspondence captures the essence of a pure jump process in which each successive stock
price is almost always close to the previous price (§ — ), but occasionally, with low but
continuing probability, significantly different (§ — #5). Observe that, as #n— oo, the probability
of a change by d becomes larger and larger, while the probability of a change by # approaches
Zero.

With these specifications, the initial condition of the central limit theorem we used is no longer
satisfied, and it can be shown the stock price movements converge to a log-Poisson rather than a
lognormal distribution as #» — . Let us define

/

Yx;yl=3

i=x

e _\‘y:
il

as the complementary Poisson distribution function. The limiting option prring formula for the
above specifications of #,dand ¢ is then

Jump Process Option Pricing Formula

C=8Y¥[x;y]- Kr"[x; y/u],
where
v=(logr—&utl(u-1),
and

x = the smallest non-negative integer
greater than (log(K/S) — &)log u.

A very similar formula holds if we let #=e“" d=d and 1-g=\#n).

Based on our previous analysis, we would now suspect that, as # — oo, our difference equation would approach the
Black-Scholes partial differential equation. This can be confirmed by substituting our definitions of 7, . d in

terms of » in the way deseribed earlier, expanding C,, C; in a Taylor series around (e‘I‘MS,tfh) and

(e‘U‘JES, 1—h) , respectively, and then expanding V" oV and #ina Taylor series, substituting these in
the equation and collecting terms. If we then divide by 4 and let 7 — 0, all terms of higher order than # go to
zero. This yields the Black-Scholes equation.
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